CHEMICAL KINETICS/RATE OF CHEMICAL REACTION

- Branch of physical chemistry that deals with rate of reaction
- Also known as reaction kinetics
- Deals with the study of the speeds of reactions and the nanoscale pathways or rearrangement by which atoms and molecules are transformed from reactants to products
- Includes:
 - Rate of reaction
 - Mechanism/sequence of steps by which a reaction occurs
 - Factors influencing the rate of reaction
- The rate or speed of reaction is the change in concentration of a reactant or product per unit time (the time can be seconds, minutes, hours, days etc)
- Consider the reaction: A B Rate R = -d [A]/dt = d[B]/dt or $-\Delta[A]/\Delta t = \Delta[B]/\Delta t$

where Δ = change, t= time, A = reactant, B = product

DIFFERENT TYPES OF RATE

• Average rate: It is rate over a period of time $R = \Delta$ Concentration/ Δ time = - Δ [A]/ Δ t = Δ [B]/ Δ t

2

- Instantaneous rate: this is the slope of a line targent to the curve of concentration versus time at a particular point of given tie
- Initial rate: It is the rate of reaction between time zero (that is initial time when t = 0) and a given time. It is given as R = <u>Conc at given time - Conc at time zero</u> Given time

CLASSWORK

Considering a reaction $CO_{(g)} + NO_{2(g)} \longrightarrow CO_{2(g)} + NO_{(g)}$ with the following data $CO_{1} = 0.040 = 0.033$

	0.100	0.007	0.050	0.040	0.033
Time (S)	0	10	20	30	40

Calculate the initial rate after (i) 105 (ii) 205 (iii) 305 and the average rate between (i) 105 and 205 (ii) 205 and 405.

FACTORS AFFECTING RATE OF CHEMICAL REACTIONS

- Concentration
- Physical State/ Surface Area
- Temperature
- Catalyst/Enzymes
- Pressure
- Visible Light/ Radiation

REACTION RATES, ORDER OF REACTION AND MOLECULARITY CONCEPT

Consider a reaction:

 $aA + bB \longrightarrow cC + dD$

- Rate of reaction can be given in terms of decrease in the amount of reactant that occur in some interval of time R = -1/a d[A]/dt = -1/b d[B]/dt
- Rate of reaction can be given in terms of increase in the amount of product that occur in some interval of time R = 1/c d[C]/dt = 1/d d[D]/dt
- Rate can be expressed in terms of reactant concentrations as R = k [A] × [B]
- The above reaction helps in defining order of reaction. The reaction is x order wrt A and y order wrt B. Thus the reaction has an overall order of (x + y)

ORDER OF REACTION

- This is the sum of the power of concentration terms in the differential rate equation or rate law
- R = k [A]^m[B]ⁿ Order of reaction is m + n when order of reaction is 0 (zero), it is zero order when order of reaction is 1 (one), it is first order when order of reaction is 2 (two), it is second order when order of reaction is 3 (three), it is third order
- R = k or R = k[A]⁰ or R = k [B]⁰ zero order reaction wrt A or B; Rate is independent of concentration
 R = k [A] first order reaction wrt [A]
- R = k [A][B] second order reaction wrt [A] and [B]
- ► $R = k[A][B]^2$ third order reaction wrt [A] and $[B]^2$
- **DETERMINATION OF ORDER OF REACTION**
- There are four common methods for determining the order of a reaction
- (a) Integration method (b) Half life method © Differential method
- (d) Isolation method

CLASSWORK:

The initial rate of decomposition of ethanal $CH_3CHO_{(g)}$ $CH_{4(g)}$ $+ CO_{2(g)}$ was5measured at a series of different concentration with the following results[CH_3CHO] (mol/dm³⁾0.100.200.300.40Rate (mol/dm³ S)0.0200.0810.1820.318

Using this data to (i) determine the order of reaction with respect to ethanal (ii) determine the rate constant for the reaction (iii) determine the rate of reaction at a concentration of ethanal of 0.15 mol/dm³

MOLECULARITY OF A REACTION

- This is the number of reactant molecules involved in a reaction or number of molecules (atoms or ions) which react together in the rate determining step (slow step) of the reaction
- ► Consider the equation $H_2O_2 + 2H^+ + 2I^- \longrightarrow 2H_2O + I_2$
- The possible mechanisms are as follows:

(i) $H_2O_2 + 2I^- \longrightarrow H_2O + OI^-$ (Slow) This is rate determining step (bimolecular) (ii) $OI^- + H^+ \longrightarrow HOI$ (Fast) bimolecular (iii) $HOI + H^+ + I^- \longrightarrow H_2O + I_2$ (Fast) trimolecular

- Molecularity is applied only to elementary reactions or elementary stages of more complex reactions
- Elementary reaction is unimolecular if the activated complex is formed from a single material
- It is bimolecular if it is formed from two molecules
- Elementary reaction may have molecularity 1, 2 and 3
- Molecularity is obtained from proposal of reaction mechanism and not from experimental work as in the case of order of reaction

from

Summation of elementary steps gives the overall reaction

SIMPLE REACTION MECHANISM

- Reaction mechanism is the pathway or elementary process/step in a reaction reactant(s) to product(s)
- ▶ In a reaction $H_2 + CI_2$ → 2HCI has the following elementary process or pathway

These elementary processes/steps in a reaction when taken together are known as the mechanism of the reaction.

SEE PAGES 10 AND 11 OF THE NOTE FOR DETAILS OF REACTION PROFILE AND MECHANISM

INTEGRATED RATE LAWS/EQUATIONS

- \blacktriangleright This is an expression which shows how the reaction rate is related to concentration $\frac{1}{7}$
- It is an approach to experimental determination of the rate law and rate constant for a reaction using calculus
- Rate equations/laws express the rate a function of reactant concentrations, product concentration and temperature
- $\blacktriangleright Consider a reaction aA + bB \longrightarrow cC + dD$
- Rate of reaction can be given in terms of decrease in the amount of reactant that occur in some interval of time R = -1/a d[A]/dt = -1/b d[B]/dt
- Rate of reaction can be given in terms of increase in the amount of product that occur in some interval of time R = 1/c d[C]/dt = 1/d d[D]/dt
- ▶ Rate can be expressed in terms of reactant concentrations as $R \propto [A] \times [B]^y = k [A] \times [B]^y$
- The proportionality constant k is called the rate constant and it is specific at a given temperature
- The exponents x and y are called reaction orders and define how the rate is affected by reactant concentration

CLASSWORK

An experiment is conducted on the rate of decomposition of dinitrogenpentaoxide

- $N_2O_{5(g)}$ $N_2O_{4(g)}$ + $\frac{1}{2}O_{2(g)}$
- The following data are found
- $[N_2O_5]$ mol/L 2.4×10^{-3} 7.20×10^{-3} 1.44×10^{-3} Rate of reaction mol/L S 4.02×10^{-5} 1.21×10^{-4} 2.41×10^{-4}

Calculate the complete rate law of the reaction

ZERO ORDER REACTION

This is a reaction whose rate is independent of concentration (i.e. initial concentration)

8

A product

- ► Rate equation in differential form is $R = -d[A]/dt = k[A]^0 = k$
- Rate equation in integrated form is [A] = [A]₀ kt (plot the graph of [A]vs t)
- ► Its half life t $\frac{1}{1/2}$ = [A]_{0 /2K}

FIRST ORDER REACTION

A reaction of first order can be represented by

A products $R \propto [A]^1$ $R = -d[A]/dt = k [A]^1$

Using calculus, the above expression can be transformed to the integrated first order rate law as follows: $-d[A]/dt = k [A]^{1}$

 $-d[A]/[A]^{1} = kdt$

If at time t=0, $A = [A]_0$ and at time t=t, A = [A]; then integrate between t = 0 and t=t

 $In [A]/[A]_0 = -kt \quad or \quad [A]/[A]_0 = e^{-kt} \equiv In[A] - In [A]_0 = -kt$ $In [A]_0/[A] = kt \quad or \quad [A]_0/[A] = e^{-kt} \quad \equiv In[A]_0 - In [A] = kt$

Since In [A]= 2.303 log[A] therefore $log[A] = log [A]_0 - kt/2.303$ (plot a graph of log[A] vs t and interpret the graph by comparing it with straight line equation)

Note: any of the above equations can be graphically used to illustrate first order reaction FIRST ORDER REACTION IN TERMS OF HALF LIFE

- ► Half life is the time required for concentration or amount of a reactant to decompose or decrease to half of its original value i.e. $t=t_{\frac{1}{2}}$ [A] = [A]₀/2 [A]₀ = 1/2
- ► Recall In [A]/[A]₀ = $-kt_{\frac{1}{2}}$
- $h_{1/2} = -kt_{1/2} \qquad h_{1/2} = 0.693/k \quad \text{(note that in}^{1/2} = -0.693)$
- ► Half life of a first order reaction is highly independent on the initial concentration

CLASSWORK

The reaction A — B + C is a first order in [A] and has a half life of 30min. Calculate the specific rate constant if [A] is initially 0.10mol/L. What will be its value after (a) 1.0 hour and (b) 24.0 hour?

10

SECOND ORDER RATE LAW

If rate is proportional to the concentration of 2A, then $aA \longrightarrow product$ Rate = $-1/a d[A]/dt = k[A]^2$ $d[A]/dt = -ak[A]^2$ $d[A]/[A]^2 = -akdt$ If at time t=0, $A = [A]_0$ and at time t=t, $A = [A]_t$; then integrate between t = 0 and t=t (-1/[A]) from limits $[A]_0 \longrightarrow [A]_t = -akt$ $-1/[A]_{t}+1/[A]_{0} = -akt$

> $1/[A]_t = 1/[A]_0 + akt$ where a is the coefficient of reactant in the balanced overall equation Plot a graph of 1/[A] vs t and interpret the graphical representation

SECOND ORDER REACTION IN TERMS OF HALF LIFE

▶ Recall the second order rate equation $1/[A]_t = 1/[A]_0 + akt$

At half life $t_{\frac{1}{2}}$, $[A]_{\frac{1}{2}} = [A]_{0}/2$ $2/[A]_{0} = 1/[A]_{0} + akt_{\frac{1}{2}}$ $1/[A]_{0} = akt_{\frac{1}{2}}$ $t^{\frac{1}{2}} = 1/ak[A]_{0}$ where a is constrained. 11

 $t^{1/2} = 1/ak[A]_{0}$ Where a is coefficient of reactant A in the balanced overall equation

CLASSWORK:

Compounds A and B react to form C and D in a reaction that was found to be second order overall and second order in A. The rate constant at 30° C is 0.622litre per mole per minute. What is the half life of A when 4.10 × 10^{-2} M of A is mixed with excess B?

Solution:

A + B C + D

As long as some B is present, only the concentration of A affects the rate because the reaction is second order in [A] and second order overall.

k = 0.622L/mole minute, [A]0 = 4.10×10^{-2} M, a = 1

 $t^{1/2} = 1/ak[A]_0 = 1/1 \times 0.622 \times 4.10 \times 10^{-2} = 39.2$ minutes.

ACTIVATION ENERGY

- It is the minimum energy required for a reaction to take place
- It is being altered by applying temperature and catalyst to a chemical reaction
- The effect of temperature and catalyst either decrease or increase the activation energy of a reaction and thus affect the rate of such chemical reaction.
- Almost every reaction goes faster when the temperature is raised
- The rate of reaction is speeded up according to Arrhenius equation when catalyst is used and thereby lowers the activation energy.

ARRHENIUS EQUATION

 $\mathbf{K} = \mathbf{A} \ \boldsymbol{\ell}^{-\mathrm{Ea/RT}}$

Where k= Rate constant, A= Proportionality constant, Ea = Activation Energy, T = Temperature, R= Gas constant

Suppose a value of the rate constant of k_1 at temperature T_1 and k_2 at temperature T_2 then Arrhenius equation can be written thus:

```
\begin{split} \mathbf{K}_{1} &= \mathbf{A}\boldsymbol{\ell}^{-\mathbf{E}\alpha/\mathbf{R}T}_{1} \quad \text{and} \quad \mathbf{K}_{2} &= \mathbf{A}\boldsymbol{\ell}^{-\mathbf{E}\alpha/\mathbf{R}T}_{2} \\ &\text{InK}_{1} &= \text{InA} - \mathbf{E}\alpha/\mathbf{R}T_{1} \quad \text{and} \quad \text{InK}_{2} &= \text{InA} - \mathbf{E}\alpha/\mathbf{R}T_{2} \\ &\text{IogK}_{1} &= \text{IogA} - \mathbf{E}\alpha/2.303\mathbf{R}T_{1} \text{ and} \quad \text{Iogk}_{2} &= \text{IogA} - \mathbf{E}\alpha/\mathbf{R}T_{2} \quad \text{Substracting the two equations} \\ &\text{Logk}_{2} - \text{Iogk}_{1} &= (-\mathbf{E}\alpha/2.303\mathbf{R}T_{2}) - (-\mathbf{E}\alpha/2.303\mathbf{R}T_{1}) \\ &\text{Iogk}_{2}/\mathbf{k}_{1} &= \mathbf{E}\alpha/2.303\mathbf{R}(1/T_{1}-1/T_{2}) = \mathbf{Iog} \mathbf{R}at\mathbf{e}_{2}/\mathbf{R}at\mathbf{e}_{1} \end{split}
```

12

APPLICATIONS OF ARRHENIUS EQUATION TO ILLUSTRATE THE EFFECTS OF TEMPERATURE AND CATALYST

- (I) The following data are found for a reaction as the temperature is changed, concentration being kept constant
 - Temperature20°C30°CRate1.5mol/LS2.4mol/LS
- Calculate the activation energy, what will the rate at 50°C, other things being kept the same?
- (ii) A catalyst lowers the activation energy for a certain reaction from 75 to 20KJ/mol. What will be the effect on the rate of the reaction at 20°C other things being equal?